
1

Dynamic Emulation and Fault-Dynamic Emulation and Fault-
Injection using Injection using DyninstDyninst

Presented by:Presented by:

Rean GriffithRean Griffith

Programming Systems Lab (PSL)Programming Systems Lab (PSL)

rg2023@cs.columbia.edurg2023@cs.columbia.edu

2

OverviewOverview

 IntroductionIntroduction
 BackgroundBackground
 Dynamic Emulation ExampleDynamic Emulation Example
 Solution RequirementsSolution Requirements
 DyninstDyninst Modifications Necessary Modifications Necessary
 On-going Fault-injection Tool DevelopmentOn-going Fault-injection Tool Development
 ConclusionsConclusions

3

IntroductionIntroduction

 We are working on the design and evaluation ofWe are working on the design and evaluation of
self-healing systems.self-healing systems.

 Based on two techniquesBased on two techniques
 Runtime-adaptations (technical)Runtime-adaptations (technical)
 Mathematical models of failures & recoveryMathematical models of failures & recovery

(analytical)(analytical)

4

Role of Runtime-AdaptationsRole of Runtime-Adaptations

 Fault-DetectionFault-Detection
 Transparently adding/modifying detectionTransparently adding/modifying detection

mechanismsmechanisms
 Replacing/removing under-performing mechanismsReplacing/removing under-performing mechanisms

 Failure-DiagnosisFailure-Diagnosis
 In-situ diagnosis of systems (drill-down)In-situ diagnosis of systems (drill-down)
 In-vivo testing (ghost transactions)In-vivo testing (ghost transactions)

 System-RepairsSystem-Repairs
 Dynamic fine-grained or coarse-grained repairsDynamic fine-grained or coarse-grained repairs

5

Dynamic Emulation ExampleDynamic Emulation Example

 Proof-of-concept dynamic emulation supportProof-of-concept dynamic emulation support
for applications using for applications using KheironKheiron/C (/C (mutatormutator))
 Allows select portions of an application to run on anAllows select portions of an application to run on an

x86 emulator rather than on the raw CPUx86 emulator rather than on the raw CPU
 Security-oriented self-healing mechanismSecurity-oriented self-healing mechanism

 Allows users to:Allows users to:
 Limit the impact of un-patched vulnerabilitiesLimit the impact of un-patched vulnerabilities
 Test/verify interim (auto-generated) patchesTest/verify interim (auto-generated) patches
 Manage the performance impact of whole-programManage the performance impact of whole-program

emulationemulation

6

Background on the x86 EmulatorBackground on the x86 Emulator

 Selective Transaction Emulator (STEM)Selective Transaction Emulator (STEM)
 An x86 instruction-level emulator developed byAn x86 instruction-level emulator developed by

Michael Michael LocastoLocasto, Stelios Sidiroglou-Douskos,, Stelios Sidiroglou-Douskos,
Stephen Boyd and Prof. Angelos KeromytisStephen Boyd and Prof. Angelos Keromytis

 Developed as a recovery mechanism for illegalDeveloped as a recovery mechanism for illegal
memory references, division by zero exceptions andmemory references, division by zero exceptions and
buffer overflow attacksbuffer overflow attacks

7

Big Picture Idea for STEMBig Picture Idea for STEM

Building a Reactive Immune System for Software Systems,
Stelios Sidiroglou Michael E. Locasto Stephen W. Boyd Angelos D. Keromytis

USENIX 2005

8

Limitations of the Original STEMLimitations of the Original STEM
 Inserted via source-codeInserted via source-code

 Manual identification of locations to emulateManual identification of locations to emulate
 Re-compilation and (static) re-linking needed toRe-compilation and (static) re-linking needed to

emulate different sections of an applicationemulate different sections of an application

 Minimum observed runtime over-head of 30%.Minimum observed runtime over-head of 30%.

9

Proposed SolutionProposed Solution

Dynamic,
No

re-compilation

10

Solution RequirementsSolution Requirements

 Dynamic Loading of the STEM x86 Emulator.Dynamic Loading of the STEM x86 Emulator.
 Clean CPU-to-Emulator handoffClean CPU-to-Emulator handoff

 Correct Emulator initializationCorrect Emulator initialization
 Correct Emulator executionCorrect Emulator execution

 Clean Emulator-to-CPU handoffClean Emulator-to-CPU handoff
 Correct Emulator unloadCorrect Emulator unload

11

Requirements Met Out-of-the-BoxRequirements Met Out-of-the-Box
by by DyninstDyninst 5.0.1 5.0.1

 Dynamic Loading of the STEM x86 Emulator.Dynamic Loading of the STEM x86 Emulator.
 Clean CPU-to-Emulator handoffClean CPU-to-Emulator handoff

 Correct Emulator initializationCorrect Emulator initialization
 Correct Emulator executionCorrect Emulator execution

 Clean Emulator-to-CPU handoffClean Emulator-to-CPU handoff
 Correct Emulator unloadCorrect Emulator unload

ButBut……with a few simple modifications to with a few simple modifications to DyninstDyninst,,
we are able to satisfy all these requirements.we are able to satisfy all these requirements.

12

Unmodified Unmodified DyninstDyninst Operation Operation

13

Dynamic STEM OperationDynamic STEM Operation

14

Correct Emulator InitializationCorrect Emulator Initialization
 –– DyninstDyninst Modifications Modifications

 Emitter32::emitBTSaves modificationsEmitter32::emitBTSaves modifications
 Save CPU state before instrumentation on the realSave CPU state before instrumentation on the real

CPU stack AND at a location in the target programCPU stack AND at a location in the target program
address space (Register storage area address)address space (Register storage area address)

 Save the instructions mangled by inserting theSave the instructions mangled by inserting the
trampoline at a KNOWN location in the targettrampoline at a KNOWN location in the target
program address space (Code storage area address)program address space (Code storage area address)

 instPointinstPoint, , BPatch_pointBPatch_point modifications modifications
 Added extra fields and methods to the typeAdded extra fields and methods to the type

definitions to set/get the extra informationdefinitions to set/get the extra information

15

Dynamic Emulation Dynamic Emulation MutatorMutator Snippet Snippet

16

Correct Emulator ExecutionCorrect Emulator Execution

 Register storage area address used to initializeRegister storage area address used to initialize
STEMSTEM’’ss registers registers

 Code storage area address used to primeCode storage area address used to prime
STEMSTEM’’ss execution pipeline execution pipeline

 STEM tracks its current stack depthSTEM tracks its current stack depth
 Initially set to 0Initially set to 0
 Call and Return instructions modify the stack depthCall and Return instructions modify the stack depth
 A return instruction at depth 0 signals the end ofA return instruction at depth 0 signals the end of

emulationemulation

17

Correct Emulator UnloadCorrect Emulator Unload

 CleanupCleanup
 Copy emulator registers to real CPU registersCopy emulator registers to real CPU registers
 Push the Push the saved_eipsaved_eip onto the real CPU stack onto the real CPU stack
 Make it the return address for the current stackMake it the return address for the current stack

frame frame –– pop it into 4(%ebp) pop it into 4(%ebp)
 Push the Push the saved_ebpsaved_ebp onto the real onto the real cpucpu stack stack
 Restore that value into the real EBP registerRestore that value into the real EBP register

18

Current StatusCurrent Status

 DoesnDoesn’’t crash on our simple test programs.t crash on our simple test programs.
 Correct computation results for these programs.Correct computation results for these programs.
 Multiple emulator entries/exits e.g. in a loop.Multiple emulator entries/exits e.g. in a loop.
 More refinements to x86 emulator needed toMore refinements to x86 emulator needed to

support more complicated programssupport more complicated programs
 Emulator-state rollbacks in the worksEmulator-state rollbacks in the works
 Clean up the CPU-to-Emulator and Emulator-to-Clean up the CPU-to-Emulator and Emulator-to-

CPU handoffsCPU handoffs

19

Role of Runtime-AdaptationsRole of Runtime-Adaptations
 Fault-DetectionFault-Detection

 Transparently adding/modifying detection mechanismsTransparently adding/modifying detection mechanisms
 Replacing/removing under-performing mechanismsReplacing/removing under-performing mechanisms

 Failure-DiagnosisFailure-Diagnosis
 In-situ diagnosis of systems (drill-down)In-situ diagnosis of systems (drill-down)
 In-vivo testing (ghost transactions)In-vivo testing (ghost transactions)

 System-RepairsSystem-Repairs
 Dynamic fine-grained or coarse-grained repairsDynamic fine-grained or coarse-grained repairs

 Fault-InjectionFault-Injection
 Exercise the detection, diagnosis and repairExercise the detection, diagnosis and repair

mechanisms so we can perform a quantitative evaluationmechanisms so we can perform a quantitative evaluation

20

Fault-Injection Tool DevelopmentFault-Injection Tool Development
 KheironKheiron/CLR and /CLR and KheironKheiron/JVM/JVM

 Fault-injection tools for .NET applications and JVMFault-injection tools for .NET applications and JVM
applications/application-servers based runtimeapplications/application-servers based runtime
adaptations (adaptations (bytecodebytecode-rewriting)-rewriting)

 KheironKheiron/C extensions/C extensions
 Dynamic fault-injection tool for databases usingDynamic fault-injection tool for databases using

DyninstDyninst. Specifically targeting the query (re)-. Specifically targeting the query (re)-
planning and processing sub-systems of the databaseplanning and processing sub-systems of the database

 Device driver fault-injection tools for Linux 2.4,Device driver fault-injection tools for Linux 2.4,
Linux 2.6, Windows 2003 Server and Solaris 10Linux 2.6, Windows 2003 Server and Solaris 10
 Evaluating device-driver recovery frameworks e.g.Evaluating device-driver recovery frameworks e.g.

Nooks and Solaris 10 Fault Isolation ServicesNooks and Solaris 10 Fault Isolation Services

21

ConclusionsConclusions

 We have described and implemented an exampleWe have described and implemented an example
of dynamically inserting and removing aof dynamically inserting and removing a
recovery mechanism based on selectiverecovery mechanism based on selective
emulation.emulation.

 More work needs to be done to polish ourMore work needs to be done to polish our
prototype and experimentally evaluate theprototype and experimentally evaluate the
efficacy of this recovery mechanism.efficacy of this recovery mechanism.

22

AcknowledgementsAcknowledgements

 This work was conducted under the supervisionThis work was conducted under the supervision
of Prof. Gail Kaiser and with the help of Steliosof Prof. Gail Kaiser and with the help of Stelios
Sidiroglou
 We would like to thank Matthew Legendre, DrewWe would like to thank Matthew Legendre, Drew

Bernat and the Bernat and the DyninstDyninst Team for their Team for their
assistance/guidance as we worked with assistance/guidance as we worked with DyninstDyninst
4.2.1 and 4.2.1 and DyninstDyninst 5.0.1 to develop our dynamic 5.0.1 to develop our dynamic
emulation techniques.emulation techniques.

23

Thank YouThank You

Questions, Comments Queries?Questions, Comments Queries?

For more details please contact:For more details please contact:
Rean GriffithRean Griffith

Programming Systems Lab Columbia UniversityProgramming Systems Lab Columbia University
rg2023@cs.columbia.edurg2023@cs.columbia.edu

