Dynamic Emulation and Fault-

Injection using Dyninst

Presented by:
Rean Griffith
Programming Systems ILab (IPSL)
rg2023(@cs.columbia.edu

Overview

B Introduction

m Background

® Dynamic Emulation Example

® Solution Requirements

m Dyninst Modifications Necessary

B On-going Fault-injection Tool Development

m Conclusions

Introduction

m We are working on the design and evaluation of
self-healing systems.

m Based on two techniques

® Runtime-adaptations (technical)

m Mathematical models of failures & recovery
(analytical)

Role of Runtime-Adaptations

B Fault-Detection

m Transparently adding/modifying detection
mechanisms

m Replacing/removing under-performing mechanisms
m Failure-Diagnosis

® [n-situ diagnosis of systems (drill-down)

B [n-vivo testing (ghost transactions)
m System-Repairs

® Dynamic fine-grained or coarse-grained repaits

Dynamic Emulation Example

m Proof-of-concept dynamic emulation support
for applications using Kheiron/C (mutator)

m Allows select portions of an application to run on an
x86 emulator rather than on the raw CPU

® Security-oriented self-healing mechanism

m Allows users to:
® Limit the impact of un-patched vulnerabilities
m Test/verify interim (auto-generated) patches

® Manage the performance impact of whole-program
emulation

Background on the x86 Emulator

m Sclective Transaction Emulator (STEM)

® An x86 instruction-level emulator developed by
Michael Locasto, Stelios Sidiroglou-Douskos,
Stephen Boyd and Prof. Angelos Keromytis

® Developed as a recovery mechanism for illegal
memory references, division by zero exceptions and
buffer overflow attacks

Big Picture Idea for STEM

s N (2) Input (1) Sensors determine

(3) Feedback control loop failure

A N A Vector
W zf’ -_\)f ’t-)
Hypothesis | U 3 Input Vector
i /" Feedback ™. & A
Testlng& k\\ContrD|LOOp ," £ \-‘/9 \\\ ._k\
Analysis ') 2

P - Update Application >

NV strumente ~ Application Server
Appti on (4) Update .7

Application

Figure 1: Feedback control loop: (1) a variety of sensors monitor the application for known types (but unknown instances)
of faults; (2) upon recognizing a fault, we emulate the region of code where the fault occurred and test with the inputs
seen before the fault occurred: (3) by varying the scope of emulation, we can determine the *“narrowest™ code slice we can
emulate and still detect and recover from the fault: (4) we then update the production version of the server.

Building a Reactive Immune System for Software Systems,
Stelios Sidiroglou Michael E. Locasto Stephen W. Boyd Angelos D. Keromytis
USENIX 2005

Limitations of the Original STEM

B [nserted via source-code
® Manual identification of locations to emulate

® Re-compilation and (static) re-linking needed to
emulate different sections of an application

void foo()

inti=0;

/I Macro: saves gp registers
emulate_init();

/I begin emulation function call
emulate_begin();

I=i+10;

// end emulation function call
emulate_end();

/I Macro: commits/restores gp registers
emulate_term();

B Minimum observed runtime over-head of 30%.

Proposed Solution

CPU-Emulator Boundary
|

static int i =0;
void SomeFunc()

{

Dynamic,

o No
I=1=10;

void main()

!
!
!
!
} I re-compilation
[
[
[
[

while(1)
{

}

Real x86 CPU

i SomeFunc();

}

Virtual x86 CPU (STEM)

Solution Requirements

m Dynamic [Loading of the STEM x86 Emulator.
B Clean CPU-to-Emulator handotf

m Correct Emulator initialization

m Correct Emulator execution

B Clean Emulator-to-CPU handoff

m Correct Emulator unload

Requirements Met Out-of-the-Box
by Dyninst 5.0.1

m Dynamic [Loading of the STEM x86 Emulator.
a-CleanCRUtotomulatorhandett
- Erdntorinitalions
—u Correct Emulatorexecution—————
n-CleanEmulater-te-CPBhandott
—s-Cotreet Emulator-uptoad———

But...with a few simple modifications to Dyninst,

we are able to satisty all these requirements.

Unmodified Dyninst Operation

staticinti = 0; - 08049100 <_z8SomeFuncy>
compile time | 8049100: 55 push %ebp
void SomeFunc() [——— 8049101: 89 eb5 mov %esp,%ebp
{ 8048103: 83 05/c4 6¢c 0508 0a addl $0xa,0x08056cc4
i=i+10, 8045910a: 5d pop Yebp
804910b: c3 ret

U runtime transformation

B 08049100 <_Z8SomeFuncy>:
8049100: e9a0 996840 jmp 0x40689920 (jump to trampoline)
- 8049103: ¢4 6¢ 05 08 0a instruction mangled by trampoline insertion
804910a: 5d pop %ebp (next valid instruction)
804910b: c3 ret (return to calling function)

40889%a0 <trampoline>:

save CPU registers

/l inserted assembly from snippet e.g. a function call
restore CPU registers

jump to saved/relocated instructions

e

< ns>

55 push %ebp

89 e5 mov %esp,%eb
8305¢c46c05080a addl $0xa,0x08056cc4
e90a910408 Jjmp 0x8045910a (jump to next valid instruction)

Dynamic STEM Operation

staticinti = 0; - 08049100 <_z8SomeFuncy>
compile time | 8049100: 55 push %ebp

void SomeFunc() [——— 8049101: 89 eb5 mov %esp,%ebp
8048103: 83 05/c4 6c 0508 0a addl $0xa,0x08056cc4

{
i=i+10, 8045910a: 5d pop Yebp
804910b: c3 ret

U runtime transformation

08049100 <_Z8SomeFuncv=>:
8049100: e9a0 996840 jmp 0x40689920 (jump to trampoline)
8049103: ¢4 6¢ 05 08 0a instruction mangled by trampoline insertion
804910a: 5d pop %ebp (next valid instruction)
804910b: c3 ret (return to calling function)

40889%a0 <trampoline>:

save CPU registers

// inserted assembly from snippet e.g. a function call
S

i ns=>
55 push %ebp
89 e5 mov %esp,%eb
8305¢c46c05080a addl $0xa,0x08056cc4
e90a910408 Jjmp 0x8045910a (jump to next valid instruction)

Correct Emulator Initialization
— Dyninst Modifications

B Emitter32::emitBTSaves modifications

m Save CPU state before instrumentation on the real
CPU stack AND at a location in the target program
address space (Register storage area address)

® Save the instructions mangled by inserting the
trampoline at a KNOWN location in the target
program address space (Code storage area address)

m instPoint, BPatch point modifications

® Added extra fields and methods to the type
definitions to set/get the extra information

Dynamic Emulation Mutator Snippet

BPatch_point* pt = NULL;

pt = (*points)[0];

/Il Create data type
regStorageAreaType = bpatch.createScalar("storageArea", sizeof(regData));

/I Allocate space for data type instance
regStorageAreaVar = process->malloc(*regStorageAreaType);

/Il Set the address of the register storage area on the instrumentation point
pt->setRegisterStorageAddress((unsigned int) regStorageAreaVar->getBaseAddr());

pt->setNuminstructions(pt->getNumDisplacedInstructions()),
pt->setBytesToSave(pt->getSizeofDisplacedInstructions());
pt->setFunctionBaseAddress((unsigned int) targetFunc->getBaseAddr());

/I Allocate space to save the displaced instructions
codeStorageAreaType = bpatch.createScalar("codeArea", pt->getBytesToSave());
codeStorageAreaVar = process->malloc(*codeStorageAreaType);

/Il Set the address of the code storage area on the instrumentation point
pt->setCodeStorageAddress((unsigned int) codeStorageAreaVar->getBaseAddr());

Correct Emulator Execution

m Register storage area address used to initialize
STEM’s registers

m Code storage area address used to prime
STEM’s execution pipeline

m STEM tracks its current stack depth
m Initially set to 0
m Call and Return instructions modity the stack depth

B A return instruction at depth 0 signals the end of
emulation

Correct Emulator Unload

m Cleanup
® Copy emulator registers to real CPU registers
® Push the saved_eip onto the real CPU stack

m Make it the return address for the current stack

frame — pop it into 4(%ebp)
® Push the saved_ebp onto the real cpu stack

m Restore that value into the real EBP register

Current Status

m Doesn’t crash on our simple test programs.

m Correct computation results for these programs.

m Multiple emulator entties/exits e.g. in a loop.

B More refinements to x86 emulator needed to
support more complicated programs
B Emulator-state rollbacks in the works

® Clean up the CPU-to-Emulator and Emulator-to-
CPU handoffs

Role of Runtime-Adaptations

Fault-Detection
m Transparently adding/modifying detection mechanisms
m Replacing/removing under-performing mechanisms
Failure-Diagnosis
® [n-situ diagnosis of systems (drill-down)
® [n-vivo testing (ghost transactions)
System-Repairs
= Dynamic fine-grained or coarse-grained repairs
Fault-Injection

m Exercise the detection, diagnosis and repair

mechanisms so we can petform a quantitative evaluation
19

Fault-Injection Tool Development

m Kheiron/CLR and Kheiron/JVM

® Mault-injection tools for .NET applications and [VM
applications/application-servers based runtime
adaptations (bytecode-rewriting)

m Kheiron/C extensions
® Dynamic fault-injection tool for databases using
Dyninst. Specifically targeting the query (re)-
planning and processing sub-systems ot the database

m Device driver fault-injection tools for Linux 2.4,
Linux 2.6, Windows 2003 Server and Solaris 10

m Bvaluating device-driver recovery frameworks e.g.
Nooks and Solaris 10 Fault Isolation Services

Conclusions

m We have described and implemented an example
of dynamically inserting and removing a
recovery mechanism based on selective
emulation.

m More work needs to be done to polish our

prototype and experimentally evaluate the

etficacy of this recovery mechanism.

Acknowledgements

m This work was conducted under the supervision
of Prof. Gail Kaiser and with the help of Stelios
Sidiroglou

® We would like to thank Matthew Legendre, Drew
Bernat and the Dyninst Team for their
assistance/guidance as we worked with Dyninst

4.2.1 and Dyninst 5.0.1 to develop our dynamic

emulation techniques.

Thank You

Questions, Comments Queries?

For more details please contact:

Rean Griffith

Programming Systems IL.ab Columbia University
rg2023(@cs.columbia.edu

